發新話題
打印

常見硬體技術語大全

常見硬體技術語大全

(一):CPU術語
一、CPU術語解釋

  3DNow!: (3D no waiting)AMD公司開發的SIMD指令集,可以增強浮點和多媒體運算的速度,它的指令數為21條。

  ALU: (Arithmetic Logic Unit,算術邏輯單元)在處理器之中用於計算的那一部分,與其同級的有資料傳輸單元和分支單元。

  BGA:(Ball Grid Array,球狀矩陣排列)一種晶片封裝形式,例:82443BX。

  BHT: (branch prediction table,分支預測表)處理器用於決定分支行動方向的數值表。

  BPU:(Branch Processing Unit,分支處理單元)CPU中用來做分支處理的那一個區域。

  Brach Pediction: (分支預測)從P5時代開始的一種先進的資料處理方法,由CPU來判斷程序分支的進行方向,能夠更快運算速度。

  CMOS: (Complementary Metal Oxide Semiconductor,互補金屬氧化物半導體)它是一類特殊的晶片,最常見的用途是主機板的BIOS(Basic Input/Output System,基本輸入/輸出系統)。

  CISC: (Complex Instruction Set Computing,複雜指令集電腦)相對於RISC而言,它的指令位數較長,所以稱為複雜指令。如:x86指令長度為87位。

  COB: (快取 on board,板上集成緩衝)在處理器卡上集成的緩衝,通常指的是二級緩衝,例:奔騰II

  COD: (快取 on Die,晶片內集成緩衝)在處理器晶片內部集成的緩衝,通常指的是二級緩衝,例:PGA賽揚370

  CPGA: (Ceramic Pin Grid Array,陶瓷針型柵格陣列)一種晶片封裝形式。

  CPU: (Center Processing Unit,中央處理器)電腦系統的大腦,用於控制和管理整個機器的運作,並執行計算任務。

  Data Forwarding: (資料前送)CPU在一個時鐘週期內,把一個單元的輸出值內容拷貝到另一個單元的輸入值中。

  Decode: (指令解碼)由於X86指令的長度不一致,必須用一個單元進行「翻譯」,真正的內核按翻譯後要求來工作。

  EC: (Embedded Controller,嵌入式控制器)在一組特定系統中,新增到固定位置,完成一定任務的控制裝置就稱為嵌入式控制器。

  Embedded Chips: (嵌入式)一種特殊用途的CPU,通常放在非電腦系統,如:家用電器。

  EPIC: (explicitly parallel instruction code,並行指令程式碼)英特爾的64位晶片架構,本身不能執行x86指令,但能通過譯碼器來相容舊有的x86指令,只是運算速度比真正的32位晶片有所下降。

  FADD: (Floationg Point Addition,浮點加)FCPGA(Flip Chip Pin Grid Array,反轉晶片針腳柵格陣列)一種晶片封裝形式,例:奔騰III 370。

  FDIV: (Floationg Point Divide,浮點除)FEMMS(Fast Entry/Exit Multimedia State,快速進入/退出多媒體狀態)  在多能奔騰之中,MMX和浮點單元是不能同時執行的。新的晶片加快了兩者之間的切換,這就是FEMMS。

  FFT: (fast Fourier transform,快速熱歐姆轉換)一種複雜的算法,可以測試CPU的浮點能力。

  FID: (FID:Frequency identify,頻率鑒別號碼)奔騰III通過ID號來檢查CPU頻率的方法,能夠有效防止Remark。

  FIFO: (First Input First Output,先入先出貯列)這是一種傳統的按序執行方法,先進入的指令先完成並引退,跟著才執行第二條指令。

  FLOP: (Floating Point Operations Per Second,浮點操作/秒)計算CPU浮點能力的一個服務機構。

  FMUL: (Floationg Point Multiplication,浮點乘)

  FPU: (Float Point Unit,浮點運算單元)FPU是專用於浮點運算的處理器,以前的FPU是一種單獨晶片,在486之後,英特爾把FPU與集成在CPU之內。

  FSUB: (Floationg Point Subtraction,浮點減)

  HL-PBGA: (表面黏著、高耐熱、輕薄型塑膠球狀矩陣封裝)一種晶片封裝形式。

  IA: (Intel Architecture,英特爾架構)英特爾公司開發的x86晶片結構。

  ID: (identify,鑒別號碼)用於判斷不同晶片的識別程式碼。

  IMM: (Intel Mobile Module,英特爾移動模組)英特爾開發用於筆記型電腦的處理器模組,集成了CPU和其它控制設備。

  Instructions 快取: (指令緩衝)由於系統主記憶體的速度較慢,當CPU讀取指令的時候,會導致CPU停下來等待記憶體傳輸的情況。指令緩衝就是在主記憶體與CPU之間增加一個快速的存儲區域,即使CPU未要求到指令,主記憶體也會自動把指令預先送到指令緩衝,當CPU要求到指令時,可以直接從指令緩衝中讀出,無須再存取主記憶體,減少了CPU的等待時間。

  Instruction Coloring: (指令分類)一種製造預測執行指令的技術,一旦預測判斷被相應的指令決定以後,處理器就會相同的指令處理同類的判斷。

  Instruction Issue: (指令發送)它是第一個CPU管道,用於接收記憶體送到的指令,並把它發到執行單元。IPC(Instructions Per Clock Cycle,指令/時鐘週期)表示在一個時鐘週期用可以完成的指令數目。

  KNI: (Katmai New Instructions,Katmai新指令集,即SSE) Latency(潛伏期)從字面上瞭解其含義是比較困難的,實際上,它表示完全執行一個指令所需的時鐘週期,潛伏期越少越好。嚴格來說,潛伏期包括一個指令從接收到發送的全程序。現今的大多數x86指令都需要約5個時鐘週期,但這些週期之中有部分是與其它指令交迭在一鸕模ú⑿寫p恚G紹制PPU製造商宣傳的潛伏期要比實際的時間長。

  LDT: (Lightning Data Transport,閃電資料傳輸總線)K8採用的新型資料總線,外頻在200MHz以上。

  MMX: (MultiMedia Extensions,多媒體擴展指令集)英特爾開發的最早期SIMD指令集,可以增強浮點和多媒體運算的速度。

  MFLOPS: (Million Floationg Point/Second,每秒百萬個浮點操作)計算CPU浮點能力的一個服務機構,以百萬條指令為基準。

  NI: (Non-Intel,非英特爾架構)

除了英特爾之外,還有許多其它生產相容x86體系的廠商,由於專利權的問題,它們的產品和英特爾系不一樣,但仍然能執行x86指令。

  OLGA: (Organic Land Grid Array,基板柵格陣列)一種晶片封裝形式。

  OoO: (Out of Order,亂序執行)Post-RISC晶片的特性之一,能夠不按照程序提供的順序完成計算任務,是一種加快處理器運算速度的架構。

  PGA: (Pin-Grid Array,引腳網格陣列)一種晶片封裝形式,缺點是耗電量大。

  Post-RISC: 一種新型的處理器架構,它的內核是RISC,而外圍是CISC,結合了兩種架構的優點,擁有預測執行、處理器重命名等先進特性,如:Athlon。

  PSN: (Processor Serial numbers,處理器序列號)標識處理器特性的一組號碼,包括主頻、生產日期、生產編號等。

  PIB: (Processor In a Box,盒裝處理器)CPU廠商正式在市面上發售的產品,通常要比OEM(Original Equipment Manufacturer,原始設備製造商)廠商流通到市場的散裝晶片貴,但只有PIB擁有廠商正式的保修權利。

  PPGA: (Plastic Pin Grid Array,塑膠針狀矩陣封裝)一種晶片封裝形式,缺點是耗電量大。

  PQFP: (Plastic Quad Flat Package,塑料方塊平面封裝)一種晶片封裝形式。

  RAW: (Read after Write,寫後讀)這是CPU亂序執行造成的錯誤,即在必要條件未成立之前,已經先寫下結論,導致最終結果出錯。

  Register Contention: (搶佔寄存器)當寄存器的上一個寫回任務未完成時,另一個指令徵用此寄存器時出現的衝突。

  Register Pressure: (寄存器不足)軟體算法執行時所需的寄存器數目受到限制。對於X86處理器來
說,寄存器不足已經成為了它的最大特點,因此AMD才想在下一代晶片K8之中,增加寄存器的數量。

  Register Renaming: (寄存器重命名)把一個指令的輸出值重新定位到一個任意的內部寄存器。在x86
架構中,這類情況是常常出現的,如:一個fld或fxch或mov指令需要同一個目標寄存器時,就要動用到寄存器重命名。

  Remark: (晶片頻率重標識)晶片製造商為了方便自己的產品定級,把大部分CPU都設置為可以自由調節倍頻和外頻,它在同一批CPU中選出好的定為較高的一級,性能不足的定位較低的一級,這些都在工廠內部完成,是合法的頻率定位方法。但出廠以後,經銷商把低檔的CPU超頻後,貼上新的標籤,當成高階CPU賣的非法頻率定位則稱為Remark。因為生產商有權力改變自己的產品,而經銷商這樣做就是侵犯版權,不要以為只有軟體才有版權,硬體也有版權呢。

  Resource contention: (資源衝突)當一個指令需要寄存器或管道時,它們被其它指令所用,處理器不能即時作出回應,這就是資源衝突。

  Retirement: (指令引退)當處理器執行過一條指令後,自動把它從調度工作中去掉。如果
僅是指令完成,但仍留在調度工作中,亦不算是指令引退。

  RISC: (Reduced Instruction Set Computing,精簡指令集電腦)一種指令長度較短的電腦,其執行速度比CISC要快。

  SEC: (Single Edge Connector,單邊連接器)一種處理器的模組,如:奔騰II。

  SIMD: (Single Instruction Multiple Data,單指令多資料流)能夠複製多個操作,並把它們打包在大型寄存器的一組指令集,例:3DNow!、SSE。

  SiO2F: (Fluorided Silicon Oxide,二氧氟化硅)製造電子元件才需要用到的材料。

  SOI: (Silicon on insulator,絕緣體硅片)SONC(System on a chip,系統集成晶片)在一個處理器中集成多種功能,如:Cyrix MediaGX。

  SPEC: (System Performance Evaluation Corporation,系統性能評估測試)測試系統總體性能的Benchmark。

  Speculative execution: (預測執行)一個用於執行未明指令流的區域。當分支指令發出之後,傳統處理器在未收到正確的反饋信息之前,是不能做任何工作的,而具有預測執行能力的新型處理器,可以估計即將執行的指令,採用預先計算的方法來加快整個處理程序。

  SQRT: (Square Root Calculations,平方根計算)一種複雜的運算,可以考驗CPU的浮點能力。

  SSE: (Streaming SIMD Extensions,單一指令多資料流擴展)英特爾開發的第二代SIMD指令集,有70條指令,可以增強浮點和多媒體運算的速度。

  Superscalar: (超標量體系結構)在同一時鐘週期可以執行多條指令流的處理器架構。

  TCP: (Tape Carrier Package,薄膜封裝)一種晶片封裝形式,特點是發熱小。

  Throughput: (吞吐量)它包括兩種含義:

    第一種:執行一條指令所需的最少時鐘週期數,越少越好。執行的速度越快,下一條指令和它搶佔資源的機率也越少。

    第二種:在一定時間內可以執行最多指令數,當然是越大越好。

  TLBs: (Translate Look side Buffers,翻譯旁視緩衝器)用於存儲指令和輸入/輸出數值的區域。

  VALU: (Vector Arithmetic Logic Unit,向量算術邏輯單元)在處理器中用於向量運算的部分。

  VLIW: (Very Long Instruction Word,超長指令字)一種非常長的指令組合,它把許多條指令連在一起,增加了運算的速度。

  VPU: (Vector Permutate Unit,向量排列單元)在處理器中用於排列資料的部分。



(二):硬碟術語
二、硬碟術語解釋  

  硬碟的轉速(Rotationl Speed): 也就是硬碟電機主軸的轉速,轉速是決定硬碟內部傳輸率的關鍵因素之一,它的快慢在很大程度上影響了硬碟的速度,同時轉速的快慢也是區分硬碟等級的重要標誌之一。硬碟的主軸馬達帶動碟片高速旋轉,產生浮力使磁頭飄浮在碟片上方。要將所要存取資料的扇區帶到磁頭下方,轉速越快,等待時間也就越短。因此轉速在很大程度上決定了硬碟的速度。目前市場上常見的硬碟轉速一般有5400rpm、7200rpm、甚至10000rpm。理論上,轉速越快越好。因為較高的轉速可縮短硬碟的平均尋道時間和實際讀寫時間。可是轉速越快發熱量越大,不利於散熱。現在的主流硬碟轉速一般為7200rpm以上。D

  隨著硬碟容量的不斷增大,硬碟的轉速也在不斷提高。然而,轉速的提高也帶來了磨損加劇、溫度升高、噪聲增大等一系列負面影響。於是,套用在精密機械工業上的液態軸承馬達(Fluid dynamic bearing motors)便被引入到硬碟技術中。液態軸承馬達使用的是黏膜液油軸承,以油膜替代滾珠。這樣可以避免金屬面的直接磨擦,將噪聲及溫度被減至最低;同時油膜可有效吸收震動,使抗震能力得到提高;更可減少磨損,提高壽命。

  平均尋道時間(Average seek time):指硬碟在盤面上移動讀寫頭至指定磁道尋找相應目標資料所用的時間,它描述硬碟讀取資料的能力,服務機構為毫秒。當單碟片容量增大時,磁頭的尋道動作和移動距離減少,從而使平均尋道時間減少,加快硬碟速度。目前市場上主流硬碟的平均尋道時間一般在9ms以下,大於10ms的硬碟屬於較早的產品,一般不值得購買。D

  平均潛伏時間(Average latency time): 指當磁頭移動到資料所在的磁道後,然後等待所要的資料塊繼續轉動到磁頭下的時間,一般在2ms-6ms之間。

  平均訪問時間(Average access time): 指磁頭找到指定資料的平均時間,通常是平均尋道時間和平均潛伏時間之和。平均訪問時間最能夠代表硬碟找到某一資料所用的時間,越短的平均訪問時間越好,一般在11ms-18ms之間。注意:現在不少硬碟廣告之中所說的平均訪問時間大部分都是用平均尋道時間所替代的。D

  突發資料傳輸率(Burst data transfer rate):指的是電腦通過資料總線從硬碟內部緩衝區中所讀取資料的最高速率。也叫外部資料傳輸率(External data transfer rate)。目前採用UDMA/66技術的硬碟的外部傳輸率已經達到了66.6MB/s。D

  最大內部資料傳輸率(Internal data transfer rate): 指磁頭至硬碟緩衝間的最大資料傳輸率,一般取決於硬碟的碟片轉速和碟片資料線密度(指同一磁道上的資料間隔度)。也叫持續資料傳輸率(sustained transfer rate)。一般採用UDMA/66技術的硬碟的內部傳輸率也不過25-30MB/s,只有極少數產品超過30MB/s,由於內部資料傳輸率才是系統真正的瓶頸,因此大家在購買時要分清這兩個概念。不過一般來講,硬碟的轉速相同時,單碟容量大的內部傳輸率高;在單碟容量相同時,轉速高的硬碟的內部傳輸率高。

  自動檢測分析及報告技術(Self-Monitoring Analysis and Report Technology,簡稱S.M.A.R.T): 現在出廠的硬碟基本上都支持S.M.A.R.T技術。這種技術可以對硬碟的磁頭單元、碟片電機驅動系統、硬碟內部電路以及碟片表面媒介材料等進行監測,當S.M.A.R.T監測並分析出硬碟可能出現問題時會及時向用戶報警以避免電腦資料受到損失。S.M.A.R.T技術必須在主機板支持的前提下才能發生作用,而且S.M.A.R.T技術也不能保證能預報出所有可能發生的硬碟故障。

  磁阻磁頭技術MR(Magneto-Resistive Head): MR(MAGNETO-RESITIVEHEAD)即磁阻磁頭的簡稱。MR技術可以更高的實際記錄密度、記錄資料,從而增加硬碟容量,提高資料吞吐率。目前的MR技術已有幾代產品。MAXTOR的鑽石三代/四代等均採用了最新的MR技術。磁阻磁頭的工作原理是關於磁阻效應來工作的,其核心是一小片金屬材料,其電阻隨磁場變化而變化,雖然其變化率不足2%,但因為磁阻元件連著一個非常靈敏的放大器,所以可測出該微小的電阻變化。MR技術可使硬碟容量提高40%以上。GMR(GiantMagnetoresistive)巨磁阻磁頭GMR磁頭與MR磁頭一樣,是利用特殊材料的電阻值隨磁場變化的原理來讀取碟片上的資料,但是GMR磁頭使用了磁阻效應更好的材料和多層薄膜結構,比MR磁頭更為敏感,相同的磁場變化能引起更大的電阻值變化,從而可以實現更高的存儲密度,現有的MR磁頭能夠達到的碟片密度為3Gbit-5Gbit/in2(千兆位每平方英吋),而GMR磁頭可以達到10Gbit-40Gbit/in2以上。目前GMR磁頭已經處於成熟推廣期,在今後的數年中,它將會逐步取代MR磁頭,成為最流行的磁頭技術。

  緩衝: 緩衝是硬碟與外部總線交換資料的場所。硬碟的讀資料的程序是將磁信號轉化為電信號後,通過緩衝一次次地填充與清空,再填充,再清空,一步步按照PCI總線的週期送出,可見,緩衝的作用是相當重要的。在接頭技術已經發展到一個相對成熟的階段的時候,緩衝的大小與速度是直接關係到硬碟的傳輸速度的重要因素。目前主流硬碟的緩衝主要有512KB和2MB等幾種。其類型一般是EDO DRAM或SDRAM,目前一般以SDRAM為主。根據寫入方式的不同,有寫通式和回寫式兩種。寫通式在讀硬碟資料時,系統先檢查請求指令,看看所要的資料是否在緩衝中,如果在的話就由緩衝送出回應的資料,這個程序稱為命中。這樣系統就不必訪問硬碟中的資料,由於SDRAM的速度比磁介質快很多,因此也就加快了資料傳輸的速度。回寫式就是在寫入硬碟資料時也在緩衝中找,如果找到就由緩衝就資料寫入盤中,現在的多數硬碟都是採用的回寫式硬碟,這樣就大大提高了性能。

  連續無故障時間(MTBF):指硬碟從開始執行到出現故障的最長時間。一般硬碟的MTBF至少在30000或40000小時。D

  部分回應完全匹配技術PRML(Partial Response Maximum Likelihood):能使碟片存儲更多的信息,同時可以有效地提高資料的讀取和資料傳輸率。是當前套用於硬碟資料讀取通道中的先進技術之一。PRML技術是將硬碟資料讀取電路分成兩段「操作流水線」,流水線第一段將磁頭讀取的信號進行數字化處理然後只選取部分「標準」信號移交第二段繼續處理,第二段將所接收的信號與PRML晶片預置信號模型進行對比,然後選取差異最小的信號進行組合後輸出以完成資料的讀取程序。PRML技術可以降低硬碟讀取資料的錯誤率,因此可以進一步提高磁牒資料密集度。

  單磁道時間(Single track seek time):指磁頭從一磁道轉移至另一磁道所用的時間。D

  超級數字信號處理器(Ultra DSP)技術:用Ultra DSP進行數學運算,其速度較一般CPU快10到50倍。採用Ultra DSP技術,單個的DSP晶片可以同時提供處理器及驅動接頭的雙重功能,以減少其它電子元件的使用,可大幅度地提高硬碟的速度和可靠性。接頭技術可以極大地提高硬碟的最大外部傳輸率,最大的益處在於可以把資料從硬碟直接傳輸到主記憶體而不佔用更多的CPU資源,提高系統性能。

  硬碟表面溫度: 指硬碟工作時產生的溫度使硬碟密封殼溫度上升情況。硬碟工作時產生的溫度過高將影響薄膜式磁頭(包括MR磁頭)的資料讀取靈敏度,因此硬碟工作表面溫度較低的硬碟有更好的資料讀、寫穩定性。

  全程訪問時間(Max full seek time):指磁頭開始移動直到最後找到所需要的資料塊所用的全部時間。D

  接頭技術:口技術可極大地提高硬碟的最大外部資料傳輸率,現在普遍使用的ULTRAATA/66已大幅提高了E-IDE接頭的性能,所謂UltraDMA66是指一種由Intel及Quantum公司設計的同步DMA傳輸協定。使用該技術的硬碟並配合相應的晶片組,最大傳輸速度可以由16MB/s提高到66MS/s。它的最大優點在於把CPU從大量的資料傳輸中解放出來了,可以把資料從HDD直接傳輸到主存而不佔用更多的CPU資源,從而在一定程度上提高了整個系統的性能。由於採用ULTRAATA技術的硬碟整體性能比普通硬碟可提高20%∼60%,所以已成為目前E-IDE硬碟事實上的標準。

  SCSI硬碟的接頭技術也在迅速發展。Ultra160/mSCSI被引入硬碟世界,對硬碟在高計算量套用領域的性能擴展極有裨益,處理關鍵任務的伺服器、圖形工作站、冗余磁牒陣列(RAID容錯式獨立磁碟陣列)等設備將因此得到性能提升。從技術發展看,Ultra160/mSCSI僅僅是硬碟接頭發展道路上的一環而已,200MB的光纖技術也遠未達到止境,未來的接頭技術必將令今天的用戶瞠目結舌。

  光纖通道技術具有資料傳輸速率高、資料傳輸距離遠以及可簡化大型存儲系統設計的優點。目前,光纖通道支持每秒200MB的資料傳輸速率,可以在一個環路上容納多達127個驅動器,局域電纜可在25米範圍內執行,遠端電纜可在10公里範圍內執行。某些專門的存儲套用領域,例如小型存儲區域網路(SAN)以及數碼視像套用,往往需要高達每秒200MB的資料傳輸速率和強勁的聯網能力,光纖通道技術的推出正適應了這一需求。同時,其超長的資料傳輸距離,大大方便了遠端通信的技術實施。由於光纖通道技術的優越性,支持光纖界面的硬碟產品開始在市場上出現。這些產品一般是大容量硬碟,平均尋道時間短,適應於高速、高資料量的套用需求,將為中高端存儲套用提供良好保證。

  IEEE1394:IEEE1394又稱為Firewire(火線)或P1394,它是一種高速串行總線,現有的IEEE1394標準支持100Mbps、200Mbps和400Mbps的傳輸速率,將來會達到800Mbps、1600Mbps、3200Mbps甚至更高,如此高的速率使得它可以作為硬碟、DVD、CD-ROM等大容量存儲設備的接頭。IEEE1394將來有望取代現有的SCSI總線和IDE接頭,但是由於成本較高和技術上還不夠成熟等原因,目前仍然只有少量使用IEEE1394接頭的產品,硬碟就更少了。

  硬碟:英文「hard-disk」簡稱HD 。是一種儲存量巨大的設備,作用是儲存電腦執行時需要的資料。電腦的硬碟主要由碟片、磁頭、磁頭臂、磁頭臂服務定位系統和底層電路板、資料保護系統以及接頭等組成。 電腦硬碟的技術指標主要圍繞在碟片大小、碟片多少、單碟容量、磁牒轉速、磁頭技術、服務定位系統、接頭、二級緩衝、噪音和S.M.A.R.T. 等參數上。

  碟片:硬碟的所有資料都存儲在碟片上,碟片是由硬質合金組成的碟片,現在還出現了玻璃碟片。目前的硬碟產品內部碟片大小有:5.25,3.5,2.5和1.8英吋(後兩種常用於筆記型及部分袖珍精密儀器中,現在桌上型中常用3.5英吋的碟片)。

  磁頭:硬碟的磁頭是用線圈纏繞在磁芯上製成的,最初的磁頭是讀寫合一的,通過電流變化去感應信號的幅度。對於大多數電腦來說,在與硬碟交換資料的程序中,讀操作遠遠快於寫操作,而且讀/寫是兩種不同特性的操作,這樣就促使硬碟廠商開發一種讀/寫分離磁頭。在1991年,IBM提出了它關於磁阻(MR)技術的讀磁頭技術--各項異性磁 ,磁頭在和旋轉的碟片相接觸程序中,通過感應碟片上磁場的變化來讀取資料。在硬碟中,碟片的單碟容量和磁頭技術是相互制約、相互促進的。

  AMR(Anisotropic Magneto Resistive,AMR):一種磁頭技術,AMR技術可以支持3.3GB/平方英吋的記錄密度,在1997年AMR是當時市場的主流技術。

  GMR(Giant Magneto Resistive,巨磁阻):比AMR技術磁頭靈敏度高2倍以上,GMR磁頭是由4層導電材料和磁性材料薄膜構成的:一個傳感層、一個非導電中介層、一個磁性的栓層和一個交換層。前3個層控制著磁頭的電阻。在栓層中,磁場強度是固定的,並且磁場方向被相臨的交換層所保持。而且自由層的磁場強度和方向則是隨著轉到磁頭下面的磁牒表面的微小磁化區所改變的,這種磁場強度和方向的變化導致明顯的磁頭電阻變化,在一個固定的信號電壓下面,就可以拾取供硬碟電路處理的信號。

  OAW(光學輔助溫式技術):希捷正在開發的OAW是未來磁頭技術發展的方向,OAW技術可以在1英吋寬內寫入105000以上的磁道,單碟容量有望突破36GB。單碟容量的提高不僅可以提高硬碟總容量、降低平均尋道時間,還可以降低成本、提高性能。

  PRML(局部回應最大擬然,Partial Response Maximum Likelihood):除了磁頭技術的日新月異之外,磁記錄技術也是影響硬碟性能非常關鍵的一個因素。當磁記錄密度達到某一程度後,兩個信號之間相互干擾的現象就會非常嚴重。為了解決這一問題,人們在硬碟的設計中加入了PRML技術。PRML讀取通道方式可以簡單地分成兩個部分。首先是將磁頭從碟片上所讀取的信號加以數字化,並將未達到標準的信號加以捨棄,而沒有將信號輸出。這個部分便稱為局部回應。最大擬然部分則是拿數字化後的信號模型與PRML晶片本身的信號模型庫加以對比,找出最接近、失真度最小的信號模型,再將這些信號重新組合而直接輸出資料。使用PRML方式,不需要像脈衝檢測方式那樣高的信號強度,也可以避開因為信號記錄太密集而產生的相互干擾的現象。 磁頭技術的進步,再加上目前記錄材料技術和處理技術的發展,將使硬碟的存儲密度提升到每平方英吋10GB以上,這將意味著可以實現40GB或者更大的硬碟容量。

  間隔因子:硬碟磁道上相鄰的兩個邏輯扇區之間的物理扇區的數量。因為硬碟上的信息是以扇區的形式來組織的,每個扇區都有一個號碼,存取操作要通過這個扇區號,所以使用一個特定的間隔因子來給扇區編號而有助於獲取最佳的資料傳輸率。
著陸區(LZ):為使硬碟有一個起始位置,一般指定一個內層柱面作為著陸區,它使硬碟磁頭在電源關閉之前停回原來的位置。著陸區不用來存儲資料,因些可避免磁頭在開、關電源期間緊急降落時所造成資料的損失。目前,一般的硬碟在電源關閉時會自動將磁頭停在著陸區,而老式的硬碟需執行PARK指令才能將磁頭歸位。

  反應時間:指的是硬碟中的轉輪的工作情況。反應時間是硬碟轉速的一個最直接的反應指標。5400RPM的硬碟擁有的是5.55 MS的反應時間,而7200RPM的可以達到4.17 MS。反應時間是硬碟將利用多長的時間完成第一次的轉輪旋轉。如果我們確定一個硬碟達到120周旋轉每秒的速度,那麼旋轉一周的時間將是1/120即0.008333秒的時間。如果我們的硬碟是0.0041665秒每週的速度,我們也可以稱這塊硬碟的反應時間是4.17 ms(1ms=1/1000每秒)。

  平均潛伏期(average latency):指當磁頭移動到資料所在的磁道後,然後等待所要的資料塊繼續轉動(半圈或多些、少些)到磁頭下的時間,服務機構為毫秒(ms)。平均潛伏期是越小越好,潛伏期小代表硬碟的讀取資料的等待時間短,這就等於具有更高的硬碟資料傳輸率。

  道至道時間(single track seek):指磁頭從一磁道轉移至另一磁道的時間,服務機構為毫秒(ms)。

  全程訪問時間(max full seek):指磁頭開始移動直到最後找到所需要的資料塊所用的全部時間,服務機構為毫秒(ms)。

  外部資料傳輸率:通稱突發資料傳輸率(burst data transfer rate):指從硬碟緩衝區讀取資料的速率,常以資料接頭速率替代,服務機構為MB/S。目前主流硬碟普通採用的是Ultra ATA/66,它的最大外部資料率即為66.7MB/s,2000年推出的Ultra ATA/100,理論上最大外部資料率為100MB/s,但由於內部資料傳輸率的制約往往達不到這麼高。

  主軸轉速:是指硬碟內電機主軸的轉動速度,目前ATA(IDE)硬碟的主軸轉速一般為5400-7200rpm,主流硬碟的轉速為7200RPM,至於SCSI硬碟的主軸轉速可達一般為7200-10,000RPM,而最高轉速的SCSI硬碟轉速高達15,000RPM。

  資料緩衝:指在硬碟內部的高速存儲器,在電腦中就像一塊緩衝器一樣將一些資料暫時性的儲存起來以供讀取和再讀取。目前硬碟的高速緩衝一般為512KB-2MB,目前主流ATA硬碟的資料緩衝為2MB,而在SCSI硬碟中最高的資料緩衝現在已經達到了16MB。對於大資料緩衝的硬碟在存取零散文件時具有很大的優勢。

  硬碟表面溫度:它是指硬碟工作時產生的溫度使硬碟密封殼溫度上升情況。硬碟工作時產生的溫度過高將影響磁頭的資料讀取靈敏度,因此硬碟工作表面溫度較低的硬碟有更好的資料讀、寫穩定性。

  MTBF(連續無故障時間):它指硬碟從開始執行到出現故障的最長時間,服務機構是小時。一般硬碟的MTBF至少在30000或40000小時。
S.M.A.R.T.(自監測、分析、報告技術):這是現在硬碟普遍採用的資料安全技術,在硬碟工作的時候監測系統對電機、電路、磁牒、磁頭的狀態進行分析,當有異常發生的時候就會發出警告,有的還會自動降速並制作備份資料。

  DPS(資料保護系統):昆騰在火球八代硬碟中首次內建了DPS,在硬碟的前300MB記憶體放操作系統等重要信息,DPS可在系統出現問題後的90秒內自動檢測恢復系統資料,若不行則用DPS軟碟啟動後它會自動分析故障,盡量保證資料不丟失。

  資料衛士:是西部資料(WD)特有的硬碟資料安全技術,此技術可在硬碟工作的空餘時間裡自動每8個小時自動掃瞄、檢測、修復碟片的各扇區。

  MaxSafe:是邁拓在金鑽二代上套用的技術,它的核心是將附加的ECC校驗位儲存在硬碟上,使讀寫程序都經過校驗以保證資料的完整性。

  DST:驅動器自我檢測技術,是希捷公司在自己硬碟中採用的資料安全技術,此技術可保證儲存在硬碟中資料的安全性。

  DFT:驅動器健康檢測技術,是IBM公司在自己硬碟中採用的資料安全技術,此技術同以上幾種技術一樣可極大的提高資料的安全性。

  噪音與防震技術:硬碟主軸高速旋轉時不可避免的產生噪音,並會因金屬磨擦而產生磨損和發熱問題,「液態軸承馬達」就可以解決這一問題。它使用的是黏膜液油軸承,以油膜替代滾珠,可有效地降低以上問題。同時液油軸承也可有效地吸收震動,使硬碟的抗震能力由一般的一二百個G提高到了一千多G,因此硬碟的壽命與可靠性也可以得到提高。昆騰在火球七代(EX)系列之後的硬碟都套用了SPS震動保護系統;邁拓在金鑽二代上套用了ShockBlock防震保護系統,他們的目的都是分散衝擊能量,盡量避免磁頭和碟片的撞擊;希捷的金牌系列硬碟中SeaShield系統是用減震材料製成的保護軟罩外加磁頭臂與碟片間的防震設計來實現的。

  ST-506/412接頭:這是希捷開發的一種硬碟接頭,首先使用這種接頭的硬碟為希捷的ST-506及ST-412。ST-506接頭使用起來相當簡便,它不需要任何特殊的電纜及接頭,但是它支持的傳輸速度很低,因此到了1987年左右這種接頭就基本上被淘汰了,採用該接頭的老硬碟容量多數都低於200MB。早期IBM PC/XT和PC/AT機器使用的硬碟就是ST-506/412硬碟或稱MFM硬碟-MFM(Modified Frequency Modulation)是指一種編碼方案。

  ESDI接頭:即(Enhanced Small Drive Interface)接頭,它是邁拓公司於1983年開發的。其特點是將編解碼器放在硬碟本身之中,而不是在控制卡上,理論傳輸速度是前面所述的ST-506的2…4倍,一般可達到10Mbps。但其成本較高,與後來產生的IDE接頭相比無優勢可言,因此在九十年代後就被淘汰了。

  IDE及EIDE接頭:IDE(Integrated Drive Electronics)的本意實際上是指把控制器與盤體集成在一起的硬碟驅動器,我們常說的IDE接頭,也叫ATA(Advanced Technology Attachment)接頭,現在PC機使用的硬碟大多數都是IDE相容的,只需用一根電纜將它們與主機板或接頭卡連起來就可以了。把盤體與控制器集成在一起的做法減少了硬碟接頭的電纜數目與長度,資料傳輸的可靠性得到了增強,硬碟製造起來變得更容易,因為廠商不需要再擔心自己的硬碟是否與其它廠商生產的控制器相容,對用戶而言,硬碟安裝起來也更為方便。

  ATA-1(IDE):ATA是最早的IDE標準的正式名稱,IDE實際上是指連在硬碟接頭的硬碟本身。ATA在主機板上有一個插口,支持一個主設備和一個從設備,每個設備的最大容量為504MB,ATA最早支持的PIO-0模式(Programmed I/O-0)只有3.3MB/s,而ATA-1一共規定了3種PIO模式和4種DMA模式(沒有得到實際套用),要昇級為ATA-2,需要安裝一個EIDE適配卡。

  ATA-2 (EIDE Enhanced IDE/Fast ATA):這是對ATA-1的擴展,它增加了2種PIO和2種DMA模式,把最高傳輸率提高到了16.7MB/s,同時引進了LBA位址轉換方式,突破了老BIOS固有504MB的限制,支持最高可達8.1GB的硬碟。如你的電腦支持ATA-2,則可以在CMOS設置中找到(LBA,LogicalBlock Address)或(CHS,Cylinder,Head,Sector)的設置。其兩個插口分別可以連接一個主設備和一個從設置,從而可以支持四個設備,兩個插口也分為主插口和從插口。通常可將最快的硬碟和CD-ROM放置在主插口上,而將次要一些的設備放在從插口上,這種放置方式對於486及早期的Pentium電腦是必要的,這樣可以使主插口連在快速的PCI總線上,而從插口連在較慢的ISA總線上。

(三):記憶體術語
  BANK:BANK是指記憶體插槽的計算服務機構(也有人稱為記憶庫),它是電腦系統與記憶體間資料匯流的基本運作服務機構。

  記憶體的速度:記憶體的速度是以每筆CPU與記憶體間資料處理耗費的時間來計算,為總線循環(bus cycle)以奈秒(ns)為服務機構。

  記憶體模組 (Memory Module):提到記憶體模組是指一個印刷電路板表面上有鑲嵌數個記憶體晶片chips,而這記憶體晶片通常是DRAM晶片,但近來系統設計也有使用快取隱藏式晶片鑲嵌在記憶體模組上記憶體模組是安裝在PC 的主機板上的專用插槽(Slot)上鑲嵌在Module上DRAM晶片(chips)的數量和個別晶片(chips)的容量,是決定記憶體模組的設計的主要因素。

  SIMM (Single In-line Memory Module):電路板上面焊有數目不等的記憶IC,可分為以下2種型態:

    72PIN:72腳位的單面記憶體模組是用來支持32位的資料處理量。

    30PIN:30腳位的單面記憶體模組是用來支持8位的資料處理量。

  DIMM (Dual In-line Memory Module):(168PIN) 用來支持64位或是更寬的總線,而且只用3.3伏特的電壓,通常用在64位的桌上型電腦或是伺服器。

  RIMM:RIMM模組是下一世代的記憶體模組主要規格之一,它是Intel公司於1999年推出晶片組所支持的記憶體模組,其頻寬高達1.6Gbyte/sec。

  SO-DIMM (Small Outline Dual In-line Memory Module) (144PIN): 這是一種改良型的DIMM模組,比一般的DIMM模組來得小,套用於筆記型電腦、列表機、傳真機或是各種終端機等。

  PLL: 為鎖相回路,用來統一整合時脈訊號,使記憶體能正確的存取資料。

  Rambus 記憶體模組 (184PIN): 採用Direct RDRAM的記憶體模組,稱之為RIMM模組,該模組有184pin腳,資料的輸出方式為串行,與現行使用的DIMM模組168pin,並列輸出的架構有很大的差異。

  6層板和4層板(6 layers V.S. 4 layers): 指的是電路印刷板PCB Printed Circuit Board用6層或4層的玻璃纖維做成,通常SDRAM會使用6層板,雖然會增加PCB的成本但卻可免除噪聲的干擾,而4層板雖可降低PCB的成本但效能較差。

  Register:是緩衝器的意思,其功能是能夠在高速下達到同步的目的。

  SPD:為Serial Presence Detect 的縮寫,它是燒錄在EEPROM內的碼,以往開機時BIOS必須偵測memory,但有了SPD就不必再去作偵測的動作,而由BIOS直接讀取 SPD取得記憶體的相關資料。

  Parity和ECC的比較:同位檢查碼(parity check codes)被廣泛地使用在偵錯碼(error detection codes)上,他們增加一個檢查位給每個資料的字元(或字元),並且能夠偵測到一個字串中所有奇(偶)同位的錯誤,但Parity有一個缺點,當電腦查到某個Byte有錯誤時,並不能確定錯誤在哪一個位,也就無法修正錯誤。

  緩衝器和無緩衝器(Buffer V.S. Unbuffer):有緩衝器的DIMM 是用來改善時序(timing)問題的一種方法無緩衝器的DIMM雖然可被設計用於系統上,但它只能支援四條DIMM。若將無緩衝器的DIMM用於速度為100Mhz的主機板上的話,將會有存取不良的影響。而有緩衝器的DIMM則可使用四條以上的記憶體,但是若使用的緩衝器速度不夠快的話會影響其執行效果。換言之,有緩衝器的DIMM雖有速度變慢之虞,但它可以支持更多DIMM的使用。

  自我充電 (Self-Refresh):DRAM內部具有獨立且內建的充電電路於一定時間內做自我充電, 通常用在筆記型電腦或可攜式電腦等的省電需求高的電腦。

  預充電時間 (CAS Latency):通常簡稱CL。例如CL=3,表示電腦系統自主存儲器讀取第一筆資料時,所需的準備時間為3個外部時脈 (System clock)。CL2與CL3的差異僅在第一次讀取資料所需準備時間,相差一個時脈,對整個系統的效能並無顯示著影響。

  時鐘信號 (Clock):時鐘信號是提供給同步記憶體做訊號同步之用,同步記憶體的存取動作必需與時鐘信號同步。

  電子工程設計發展聯合會議 (JEDEC):JEDEC大部分是由從事設計、發明的製造業尤以有關電腦記憶模組所組成的一個團體財團,一般工業所生產的記憶體產品大多以JEDEC所制定的標準為評量。

  只讀存儲器ROM (Read Only Memory):ROM是一種只能讀取而不能寫入資料之記燱體,因為這個特所以最常見的就是主機板上的 BIOS (基本輸入/輸出系統Basic Input/Output System)因為BISO是電腦開機必備的基本硬體設定用來與外圍做為低階通信接頭,所以BISO之程式燒錄於ROM中以避免隨意被清除資料。

  EEPROM (Electrically Erasable Programmable ROM):為一種將資料寫入後即使在電源關閉的情況下,也可以保留一段相當長的時間,且寫入資料時不需要另外提高電壓,只要寫入某一些句柄,就可以把資料寫入記憶體中了。

  EPROM (Erasable Programmable ROM):為一種可以透過紫外線的照射將其內部的資料清除掉之後,再用燒錄器之類的設備將資料燒錄進 EPROM內,優點為可以重複的燒錄資料。

  程序規畫的只讀存儲器 (PROM):是一種可存程序的記憶體,因為只能寫一次資料,所以它一旦被寫入資料若有錯誤,是無法改變的且無法再存其它資料,所以只要寫錯資料這顆記憶體就無法回收重新使用。

  MASK ROM:是製造商為了要大量生產,事先製作一顆有原始資料的ROM或EPROM當作樣本,然後再大量生產與樣本一樣的 ROM,這一種做為大量生產的ROM樣本就是MASK ROM,而燒錄在MASK ROM中的資料永遠無法做修改。

  隨機存取記憶體RAM ( Random Access Memory):RAM是可被讀取和寫入的記憶體,我們在寫資料到RAM記憶體時也同時可從RAM讀取資料,這和ROM記憶體有所不同。但是RAM必須由穩定流暢的電力來保持它本身的穩定性,所以一旦把電源關閉則原先在RAM裡頭的資料將隨之消失。

  動態隨機存取記憶體 DRAM (Dynamic Random Access Memory):DRAM 是Dynamic Random Access Memory 的縮寫,通常是電腦內的主存儲器,它是而用電容來做儲存動作,但因電容本身有漏電問題,所以記憶體內的資料須持續地存取不然
資料會不見。

  FPM DRAM (Fast Page Mode DRAM):是改良的DRAM,大多數為72IPN或30PIN的模組,FPM 將記憶體內部隔成許多頁數Pages,從512 bite 到數 Kilobytes 不等,它特色是不需等到重新讀取時,就可讀取各page內的資
料。

  EDO DRAM (Extended Data Out DRAM):EDO的存取速度比傳統DRAM快10%左右,比FPM快12到30倍一般為72PIN、168PIN的模組。

  SDRAM:Synchronous DRAM 是一種新的DRAM架構的技術;它運用晶片內的clock使輸入及輸出能同步進行。所謂clock同步是指記憶體時脈與CPU的時脈能同步存取資料。SDRAM節省執行指令及資料傳輸的時間,故可提升電腦效率。

  DDR:DDR 是一種更高速的同步記憶體,DDR SDRAM為168PIN的DIMM模組,它比SDRAM的傳輸速率更快, DDR的設計是套用在伺服器、工作站及資料傳輸等較高速需求之系統。

  DDRII (Double Data Rate Synchronous DRAM):DDRII 是DDR原有的SLDRAM聯盟於1999年解散後將既有的研發成果與DDR整合之後的未來新標準。DDRII的詳細規格目前尚未確定。

  DRDRAM (Direct Rambus DRAM):是下一代的主流記憶體標準之一,由Rambus 公司所設計發展出來,是將所有的接腳都連結到一個共同的Bus,這樣不但可以減少控制器的體積,已可以增加資料傳送的效率。

  RDRAM (Rambus DRAM):是由Rambus公司獨立設計完成,它的速度約一般DRAM的10倍以上,雖有這樣強的效能,但使用後記憶體控制器需要相當大的改變,所以目前這一類的記憶體大多使用在遊戲機器或者專業的圖形加速適配卡上。

  VRAM (Video RAM):與DRAM最大的不同在於其有兩組輸出及輸入口,所以可以同時一邊讀入,一邊輸出資料。

  WRAM (Window RAM):屬於VRAM的改良版,其不同之處在於其控制線路有一、二十組的輸入/輸出控制器,並採用EDO的資料存取模式。

  MDRAM (Multi-Bank RAM):MIDRAM 的內部分成數個各別不同的小儲存庫 (BANK),也就是數個屬立的小服務機構矩陣所構成。每個儲存庫之間以高於外部的資料速度相互連接,其套用於高速顯示卡或加速卡中。

  靜態隨機處理記憶體 SRAM (Static Random Access Memory):SRAM 是Static Random Access Memory 的縮寫,通常比一般的動態隨機處理記憶體處理速度更快更穩定。所謂靜態的意義是指記憶體資料可以常駐而不須隨時存取。因為此種特性,靜態隨機處理記憶體通常被用來做高速緩衝。

  Async SRAM:為異步SRAM這是一種較為舊型的SRAM,通常被用於電腦上的 Level 2 快取上,它在運作時獨立於電腦的系統時脈外。

  Sync SRAM:為同步SRAM,它的工作時脈與系統是同步的。

  SGRAM (Synchronous Graphics RAM):是由SDRAM再改良而成以區塊Block為服務機構,個別地取回或修改存取的資料,減少記憶體整體讀寫的次數增加繪圖控制器。

  高速緩衝 (快取 Ram):為一種高速度的記憶體是被設計用來處理運作CPU。快取記憶體是利用 SRAM 的顆粒來做記憶體。因連接方式不同可分為一是外接方式(External)另一種為內接方式(Internal)。外接方式是將記憶體放在主機板上也稱為Level 1 快取而內接方式是將記憶體放在CPU中稱為Level 2 快取。

  PCMCIA (Personal Computer Memory Card International Association):是一種標準的卡片型擴充接頭,多半用於筆記型電腦上或是其它外圍產品,其種類可以分為:

    Type 1:3.3mm的厚度,常作成SRAM、Flash RAM 的記憶卡以及最近列印機所使用的DRAM記憶卡。
    Type 2:5.5mm的厚度,通常設計為筆記電腦所使用的調製解調器接頭(Modem)。
    Type 3:10.5mm的厚度,被運用為連接硬碟的ATA接頭。
    Type 4:小型的PCMCIA卡,大部用於數位相機。

  FLASH:Flash記憶體比較像是一種儲存裝置,因為當電源關掉後儲存在Flash記憶體中的資料並不會流失掉,在寫入資料時必須先將原本的資料清除掉,然後才能再寫入新的資料,缺點為寫入資料的速度太慢。

  重新標示過的記憶體模組(Remark Memory Module):在記憶體市場許多商家都會販售重新標示過的記憶體模組,所謂重新標示過的記憶體模組就是將晶片Chip上的標示變更過,使其所顯示出錯誤的訊息以提供商家賺取更多的利潤。一般說來,業者會標示成較快的速度將( -7改成-6)或將沒有廠牌的改為有廠牌的。要避免購買到這方面的產品,最佳的方法就是向好聲譽的供貨商來購買頂級晶片製造商產品。

  記憶體的充電 (Refresh):主存儲器是DRAM組合而成,其電容需不斷充電以保持資料的正確。一般有2K與4K Refresh的分類,而2K比4K有較快速的Refresh但2K比4K耗電。

(四):光碟術語
四、光碟術語解釋

  CLV技術:(Constant-Linear-Velocity)恆定線速度讀取方式。在低於12倍速的光碟中使用的技術。它是為了保持資料傳輸率不變,而隨時改變旋轉光碟的速度。讀取內沿資料的旋轉速度比外部要快許多。

  CAV技術:(Constant-Angular-Velocity)恆定角速度讀取方式。它是用同樣的速度來讀取光碟上的資料。但光碟上的內沿資料比外沿資料傳輸速度要低,越往外越能體現光碟的速度,倍速指的是最高資料傳輸率。

  PCAV技術:(Partial-CAV)區域恆定角速度讀取方式。是融合了CLV和CAV的一種新技術,它是在讀取外沿資料採用CAV技術,在讀取內沿資料採用CAV技術,提高整體資料傳輸的速度。

  UDMA模式:(Ultra-DMA/33),1996年由Intdl和Quantum制定的一種資料傳輸方式,該方式I/O系統的突發資料傳輸速度可達33MB/s,還可以降低I/O系統對CPU資源的佔用率。現在又出現了UDMA/66,速度多出兩倍。

  PIOM模式:(PIO-Mode)以前普遍採用的資料傳輸模式,每個操作都要經過CPU才可完成,佔用CPU的大量資源。

  SCIC接頭:(Small-Computer-Sysem-Interface)是一種新型的外部接頭,可驅動多個外部設備;資料傳輸率可達40MB,以後將成為外部接頭的標準,價格昂貴。但佔用CPU資源少,工作穩定。

  IDE接頭:(Integrated-Drive-Electronics)是現在普遍使用的外部接頭,主要接硬碟和光碟。採用16位資料並行傳送方式,體積小,資料傳輸快。一個IDE接頭只能接兩個外部設備。

  倍速: 指的是光碟資料傳輸率,國際電子工業聯合會把150KB/s的資料傳輸率定為單倍速光碟。300KB/s的資料傳輸率也就是雙倍速。依次計算得出。

  資料傳輸率:(data-transfer-rate)是指光碟每秒中在光碟上可讀取多少千字元(kilobytes)的資料量,直接決定了光碟執行速度。單倍速光碟的資料傳輸率是150KB/s。

  平均讀取時間:(Average-Seek-Time)是指激光頭移動定位到指定的預讀取資料(這時間為rotation-latency)後,開始讀取資料,之後到將資料傳輸至電路上所需的時間。它也是光碟速度的一重要指標。

  緩衝容量:它提供一個資料緩衝,先將讀出的資料暫存起來,然後進行一次性傳送。解決與其它設備的速度匹配差距。

  激光頭:它由中心往外移動在Table-of-Contents區域,通過發射激光來尋找光碟上的指定位置,感應電阻接受到反射出的信號輸出成電子資料

  CD:(Compact-Disc)光碟。CD是由liad-in(資料開始記錄的位置);而後是Table-of-Contents區域,由內及外記錄資料;在記錄之後加上一個lead-out的資料軌結束記錄的標記。在CD光碟,模擬資料通過大型燒錄機在CD上面刻出許多連肉眼都看不見的小坑。

  CD-DA:(CD-Audio)用來儲存數位音效的光蝶片。1982年SONY、Philips所共同制定紅皮書標準,以音軌方式儲存聲音資料。CD-ROM都相容此規格音樂片的能力。

  CD-G:(Compact-Disc-Graphics)CD-DA基礎上加入圖形成為另一格式,但未能推廣。是對多媒體電腦的一次嘗試。

  CD-ROM:(Compact-Disc-Read-Only-Memory)只讀光碟機。1986年, SONY、Philips一起制定的黃皮書標準,定義檔案資料格式。定義了用於電腦資料存儲的MODE1和用於壓縮視瀕圖像存儲的MODE2兩類型,使CD成為通用的儲存介質。並加上偵錯碼及更正碼等份元,以確保電腦資料能夠完整讀取無誤。

  CD-PLUS:1994年,Microsoft公佈了新的增強的CD的標準,又稱為CD-Elure。它是將CD-Audio音效放在CD的第一軌,而後放資料檔案,如此一來CD只會讀到前面的音軌,不會讀到資料軌,達到電腦與音響兩用的好處。

  CD-ROM XA:(CD-ROM-eXtended-Architecture)1989年,SONY、Philips、Micuosoft對CD-ROM標準擴充形成的白皮書標準。又分為FORM1、FORM2兩種和一種增強型CD標準CD+。

  VCD:(Video-CD)激光視盤。SONY、Philips、JVC、Matsushita等共同制定,屬白皮書標準。是指全動態、全螢幕播放的激光影視光碟。

  CD-I:(Compact-Disc-Interactive)年,是Philips、SONY共同制定的綠皮書標準。是互動式光碟系統。1992年實現全動態視瀕圖像播放

  Photo-CD: 1989年,KODAK公司推出相片光碟的橘皮書標準,可存100張具有五種格式的高解析度照片。可加上相應的解說詞和背景音樂或插曲,成為有聲電子圖片集。

  CD-R:(Compact-Disc-Recordable)1990年,Philips發表多段式一次性寫入光碟資料格式。屬於橘皮書標準。在光碟上加一層可一次性記錄的染色層,可通進行燒錄。

  CD-RW:在光碟上加一層可改寫的染色層,通過激光可在光碟上反覆多次寫入資料。

  SDCD:(Super-Density-CD)是東芝(TOSHIBA)、日立(Hitachi)、先鋒、松下(Panasonic)、JVC、湯姆森(Thomson)、三菱、Timewamer等制訂一種超密度光碟規範。雙面提供5GB的儲存量,資料壓縮比不高

  MMCD:(Multi-Mdeia-CD)是由SONY、Philips等制定的多媒體光碟,單面提供3.7GB儲存量,資料壓縮比較高。

  HD-CD:(High-Density-CD)高密度光碟。容量大。單面容量4.7GB,雙面容量高達9.4GB,有的達到7GB。HD-CD光碟採用MPEG-2標準。

  MPEG-2: 1994年,ISO/IEC組織制定的運動圖像及其聲音編碼標準。針對廣播級的圖像和立體聲信號的壓縮和解壓縮。

  DVD:(Digital-Versatile-Disk)數字多用光碟,以MPEG-2為標準,擁有4.7G的大容量,可儲存133分鐘的高解析度全動態影視節目,包括個杜比數字環繞聲音軌道,圖像和聲音質量是VCD所不及的。

  DVD+RW:可反覆寫入的DVD光碟,又叫DVD-E。由HP、SONY、Phioips共同發佈的一個標準。容量為3.0GB,採用CAV技術來獲得較高的資料傳輸率

  PD光碟:(PowerDisk2)是Panasonic公司將可寫光碟和CD-ROM合二為一,有LF-1000(外置式)和LF-1004(內裝式)兩種類型。容量為65OMB,資料傳輸率達5.0MB/s,採用微型激光頭和精密機電伺服系統。

  ABS平衡系統:(Auto-Balance-System)是DIAMOND-DATA最新推出的三菱鑽石系列高倍速光碟所配帶的,是在光碟托盤下安上一具鋼銖軸承,光碟震動時,鋼珠在離心力的作用下到質量輕的部分,起到平衡作用,加大讀盤能力。

  部分安裝:(Partial-Installation)在安裝軟體時,只安裝一些必須或基本的檔案,當執行特殊的功能時,再讀取或執行光碟中的檔案,這樣系統便可配合一具有高速度、高效能和高穩定的光碟,達到最佳效能

  DVD-RAM:DVD論壇協會確立和公佈的一項商務可讀寫DVD標準。它容量大而價格低、速度不慢且相容性高。

(五):
五、modem術語解釋

  AT指令(ATCommands):由Hayes公司發明,現在已成為事實上的標準並被所有調製解調器製造商採用的一個調製解調器指令語言。每條指令以字母「AT」開頭,因而得名。AT後跟字母和數字表明具體的功能,例如「ATDT」是撥號指令,其它指令有「啟始化調製解調器」、「控制揚聲器音量」、「規定調製解調器啟動回應的振鈴次數」、「選項錯誤校正的格式」等等,不同牌號調製解調器的AT指令並不完全相同,請仔細閱讀MODEM用戶手冊,以便正確使用AT指令。

  波特率(BaudRate):模擬線路信號的速率,也稱調製速率,以波形每秒的振蕩數來衡量。如果資料不壓縮,波特率等於每秒鐘傳輸的資料位數,如果資料進行了壓縮,那麼每秒鐘傳輸的資料位數通常大於調製速率,使得交換使用波特和比特/秒偶爾會產生錯誤。

  DCE:「DataCommunicationEquipment(資料通信設備)」的首字母縮略詞。DCE提供建立、保持和終止聯接的功能,調製解調器就是一種DCE。

  DTE:「DataTerminalEquipment(資料終端設備)」的首字母縮略詞。DTE提供或接收資料。聯接到調製解調器上的電腦就是一種DTE。

  調製解調器(Modem):MOdulator/DEModulator(調製器/解調器)的縮寫。它是在發送端通過調製將數字信號轉換為模擬信號,而在接收端通過解調再將模擬信號轉換為數字信號的一種裝置。

  線路速率(LineRate):又稱DTE速率,服務機構是bit/s(bps)。指的是連結兩個調製解調器之間的電話線(或專線)上資料的傳輸速率。常見速率有28800bps、19200bps、14400bps、9600bps、2400bps。

  連接阜速率(PortRate):又稱DCE速率或最大吞吐量。指的是電腦串列阜到調製解調器的傳輸速率。由於現今調製解調器幾乎都支持該速率的V.42bis和MNP5壓縮標準(壓縮比都是4:1),所以這一速率一般比線路速率高得多。

  專線/撥號專線:指的是普通的兩根無源(或有源)電線。在專線上撥號沒有撥號音,因而需專門硬體支持。撥號線就是普通電話線,通過電話系統撥號。常見的調製解調器都支持撥號線,而不一定支持專線。

  遠端設置(RomoteSetup):指本機調製解調器與遠方調製解調器連通後,遠方使用者能對本機調製解調器的參數進行設置。

  賀氏相容:由於Hayes公司發明的AT指令得到了廣泛的套用。大多數其它生產調製解調器的公司都使用Hayes公司的AT指令來控制調製解調器,這類調製解調器都是賀氏相容調製解調器。

  速率:指調製解調器每秒可以傳輸的資料量的大小。調製解調器行業中,一般以Kbps作為服務機構。56 Kbps的意思是每秒可以傳送的二進制數量是56,000個。

  異步:一種通訊方式,對設備需求簡單。我們的PC機提供的標準通信接頭都是異步的。

  同步:一種通訊方式,對設備需求複雜,但通訊質量高。

  資料位:利用調製解調器在線路上傳輸資料時,每傳送一組資料,都要含有相應的控制資料,包括開始發送資料,結束資料,而這組資料中最重要的是資料位。不同的通訊環境下,一般規定不同的資料位和結束位數量。

  流量控制:用於控制調製解調器與電腦之間的資料流,具有防止因為電腦和調製解調器之間通信處理速度的不匹配而引起的資料丟失。通常有硬體流量控制(RTS/CTS)和軟體流量(XON/XOFF)控制。

  終端仿真:早期的電腦使用方式都是一台主機和許多字串方式的終端一起工作,現在的PC機也可以模仿各種終端,並可以通過調製解調器連線到其它的電腦上。模仿終端的電腦軟體叫做終端仿真。

  載波:由於普通電話線上只能傳輸聲音信號,因此調製解調器要將電腦上的數字信號,轉換為聲音信號後經電話線傳輸。載波實際上也是一種聲音信號,它攜帶著電腦上的數字信息。調製解調器需要載波信號進行彼此的溝通,因此只有載波信號在兩台調製解調器之間建立起來,調製解調器才稱為連通。

  終端速率:指調製解調器與電腦通信連接阜之間的連接速度。這個速度應大於載波速率。

  載波速率:調製解調器之間通過電話線路能夠達到的資料傳輸速度。平常所說的調製解調器速率是指載波速率。

  自動回應:當有收到電話的振鈴信號時,調製解調器自動開始回答對方的呼叫,並建立連接,以便進行電腦通信。

  各個面板燈燈亮的含義:

名稱 含義 亮燈狀態
TD Transmit Data 正在送傳資料
RD Receive Data 正在接收資料
DTR Data Terminal Ready 電腦執行通訊應用程式
CTS Clear To Send 準備傳磅資料
DCD Data Carrier Detect 偵測到載波訊號表示有資料傳送或接收
OH Off-Hook 電話線路正在使用中
AA  Automatic Answer 有人呼叫時自動接收
PWR Power Ready 電源接通


(六):音效卡術語
六、音效卡術語解釋

  DSP:即Digital Signal Processing (數字信號處理)。DSP技術在音調控制、失真效果器、Wah-wah踏板等模擬電子領域有廣泛的套用。同時,DSP在模擬均衡和混響等多種效果上也能大顯身手 。通過電腦CPU或專門的DSP晶片都可以進行DSP 動作,不同的是,專門的DSP晶片處理要比電腦CPU處理更最佳化,速度更快 。

  采樣:把模擬音瀕轉成數字音瀕的程序,就稱作采樣,所用到的主要設備便是模擬/數字轉換器(Analog to Digital Converter,即ADC,與之對應的是數/模轉換器,即DAC)。采樣的程序實際上是將通常的模擬音瀕信號的電信號轉換成二進制碼0和1,這些0和1便構成了數字音瀕文件。采樣的頻率越大則音質越有保證。由於采樣頻率一定要高於錄製的最高頻率的兩倍才不會產生失真,而人類的聽力範圍是20Hz∼20KHz,所以采樣頻率至少得是20k×2=40KHz,才能保證不產生低頻失真,這也是CD音質採用44.1KHz(稍高於40kHz是為了留有餘地)的原因。

  信噪比:以dB計算的信號最大保真輸出與不可避免的電子噪音的比率。該值越大越好。低於75dB這個指標,噪音在寂靜時有可能被發現。AWE64 Gold音效卡的信噪比是80dB,較為合理。SB Live!更是宣稱超過120dB的頂級信噪比。總的說來,由於電腦裡的高頻干擾太大,所以音效卡的信噪比往往不能令人滿意。但SB Live!提供了一個數字輸出口SPDIF,可繞過輸出時的模擬部分,極大地減少了噪音和失真,同時又極大地提高了動態範圍和清晰度

  音效卡 (Sound Card):顧名思義,就是發聲的卡片,它像人喉嚨中的聲帶一樣,有了它就能發出聲音,就能交流,你還可以唱歌。音效卡在電腦中的作用也是這樣,它可以實現人機交流,如學習外語,語音輸入等。音效卡在港台地區稱為音效卡或聲效卡,是多媒體電腦中必不可少的,電腦也就有發聲的功能。音效卡對於電腦音樂人來說是必備設備,因為用它作出來的音樂比用傳統製作方法要好很多。音效卡它帶你進入了一個"五彩繽紛"的有聲世界.讓你充分感到大自然的奇妙。

  合成技術:音效卡中的合成技術有兩種類型,第一,FM合成技術(Frenquency Modulation頻率調製);第二,WAVE TABLE(波表)合成技術。FM合成技術用計算的方法來把樂器的真實聲音表現出來,它不需要很大的存儲容量就能模擬出多種聲音來,它的結構簡單,成本低,但它的模仿能力很差。波表的英文名稱為「WAVE TABLE」,從字面翻譯就是「波形表格」的意思。其實它是將各種真實樂器所能發出的所有聲音(包括各個音域、聲調)錄製下來,存貯為一個波表文件。播放時,根據MIDI文件紀錄的樂曲信息向波表發出指令,從波表庫逐一找出對應的聲音信息,經過合成、加工後回放出來。由於它採用的是真實樂器的采樣,所以效果自然要好於FM。一般波表的樂器聲音信息都以44.1KHz、16Bit的精度錄製,以達到最真實回放效果。

  「軟」波表技術:它是軟體的形式(音效卡中WAVE TABLE存放在硬碟中,用的時候CPU調出)替代WAVE TABLE。

  DLS:可下載音源模組它是一種新型PCI音效卡所採用的一種技術,它將波表存放在硬碟上,需要是再調入記憶體.但它與WAVE TABLE有一定的區別,DLS要用專用晶片的PCI音效卡來實現音樂合成,而軟波表技術是要通過CPU來實現音樂合成的.

  Sound Font:是新加坡創新公司在中檔音效卡上使用的音色庫技術。它是用字串合成的,一個Sound Fond表現出一組音樂符號。用MIDI鍵盤輸入樂符時,會自動記下MIDI的參數,最後在Sound Fond中搜尋,當你需要它時,就下載到音效卡上。它有一個最大的好處就是,不會因音效卡的存儲容量不夠而影響到聲音的質量,能夠達到全音調和音色的理想環境。現在,只有在高階音效卡上才採用這種方式。當然了原因有兩種,在創新的這種音色庫以外,還有就是微軟的DLS標準。相比較來說,Sound Font技術實用性突出,但是只有創新音效卡能用,微軟的DLS多用在PCI音效卡上。

  波表昇級子卡:可以將FM音效卡昇級為WAVE TABLE音效卡。但是原音效卡必須帶有昇級接頭。由於各種音效卡的品牌及音效卡上所支持的存儲器是不同的,因此價格差別就很大。對於用FM音效卡的朋友來說,波表昇級子卡是很不錯的選項。但它也有一個性能/價格比的問題,是否值得要詳加權衡。

  采樣位數:即采樣值或取樣值。它是用來衡量聲音波動變化的一個參數,也就是音效卡的解析度。它的數值越大,解析度也就越高,所發出聲音的能力越強。音效卡的位是指音效卡在採集和播放聲音文件時所使用數字聲音信號的二進制位數。音效卡的位客觀地反映了數字聲音信號對輸入聲音信號描述的準確程度。在多媒體電腦中用16位的音效卡就可以了,因為人耳對聲音精確度的解析度達不到16位。

  采樣頻率:即取樣頻率,指每秒鐘取得聲音樣本的次數.它的采樣頻率越高,聲音的質量也就越好,但是它占的記憶體比較多.由於人耳的解析度很有限,所以太高的頻率就分辨不出好壞來.采樣頻率一般共分為22.05KHz、44.1KHz、48KHz三個等級,22.05只能達到FM廣播的聲音品質,44.1KHz則是理論上的CD音質界限,48KHz則更加精確一些。對於高於48KHz的采樣頻率人耳已無法辨別出來了,所以在電腦上沒有多少使用價值。

  DAC:電腦對聲音這種信號不能直接處理,先把它轉化成電腦能識別的數字信號,就要用到音效卡中的DAC(數字模擬轉換),它把聲音信號轉換成數字信號,要分兩步進行,采樣和轉換。

  音源:從字面意思理解就是聲音的來源,即聲音來自何方。它主要把聲音完全準確地表現出來。分為兩種形式,外置式,它不受音效卡的制約,聲音的質量能很好的儲存下來,但是成本要求很高。內裝式,也稱音源字卡。

  音源字卡:它自己本身帶有音樂的來源但又必須依附在音效卡上使用的一塊硬碟。在你的電腦上帶有WAVE BLASTER插頭的音效卡,就可以用音源字卡。用音源字卡的要求很低,它設置時不佔用中斷,位址不會重新選項,也不用驅動程式,只要把MIDI的連接阜設置成SB MIDI OUT即可。

  復音 (Polyphone):這個復音可不是在英語中所學的「輔音」,是指在同一時間內音效卡所能發出聲音的數量.如果你放一首MIDI音樂的時候,它所含的復音數必須小於或等於你所用的音效卡的復音數,就能聽到最佳的效果.因此,你的音效卡的復音數越多,你將能聽到許多美妙的音樂.但是你將花更多的錢.

  MP3:它是將聲音文件按1比10的比例壓縮成很小的文件存儲在光碟上.我們通常所聽的VCD一張盤也就只有一二十首,但是經過MP3文件加工的一張光碟可放幾百首是不成問題的,這對於電腦音樂的發燒友來說是再好不過了

  MIDI (Musical Indtrumend Digital Interfoce音樂設備數字接頭):它不是音樂信號,所記錄的聲音要想播放出來就必須通過MIDI界面的設置。是電子合成器與數字音樂的使用標準,同時也是電腦和電子樂器之間的橋樑。對於電腦音樂愛好者來說是一個不錯的選項。

  WAV:在Windows中,把聲音文件存儲到硬碟上的副檔名為WAV。WAV記錄的是聲音的本身,所以它占的硬碟空間大的很。例如:16位的44.1KHZ的立體聲聲音一分鐘要佔用大約10MB的容量,和MIDI相比就差的很遠。這樣看來,音效卡的壓縮功能同樣重要。

  WOC:它是聲音文件的一種存放形式。只要副檔名為VOC的文件在DOS系統下即可播放。它與WAV只是格式不同,核心部分沒有根本的區別。這種形式都是先將數字化信號經過數字/模擬轉換後,由放大器送到喇叭發出聲音。

  AVI:(Audio-Video Interactive)音瀕視瀕交互,它是微軟公司(Microsoft)推出的一個音瀕、視瀕信號壓縮標準。

  單聲道:單聲道是比較原始的聲音複製形式,早期的音效卡採用的比較普遍。當通過兩個揚聲器回放單聲道信息的時候,我們可以明顯感覺到聲音是從兩個音箱中間傳遞到我們耳朵裡的。這種缺乏位置感的錄製方式是很落後的,但在音效卡剛剛起步時,已經是非常先進的技術了。

  3D立體聲系統:它就是我們通常所說的三維.從三個方面增強了音效卡的音響的效果,第一:我們所聽到的聲音立體聲增強,第二;聲音位移;第三,混響效果.不管是在自己家裡,還是在電影院裡,不管是放VCD還是影碟,每次在螢幕上都會出現兩個聲道讓你選項即"左聲道""右聲道",我們就要把它全選,兩種聲道的聲音混合在一起,聽起來有一種震撼的感覺.但它沒有3D環繞立體聲系統好.

  3D環繞立體聲系統:從八十年代3D的出現到至今,有十幾種3D系統投入使用.到現在有兩種技術在多媒體電腦上使用,即Space(空間)均衡器和SRS(Sound Retrieval System)聲音修正系統.先講一下Space:它利用音響的效果和仿聲學的原理,根據人的耳廓對聲音的感應不同,而且也不增加聲道,就得到3D效果,人感覺聲音來自各方;SRS:它是完全利用仿聲學的原理和人耳的空間聲音的感應不同,對雙聲道的立體聲信號加工處理,儘管聲音來自前方,但人誤認為是來自各個方向.這種系統只用兩隻普通音響就可以,就能有音樂廳那種震撼的效果,它不加成本,所以很有吸引力.

  准立體聲:准立體聲音效卡的基本概念就是:在錄製聲音的時候採用單聲道,而放音有時是立體聲,有時是單聲道。採用這種技術的音效卡也曾在市面上流行過一段時間,但現在已經銷聲匿跡了。

  四聲道環繞:四聲道環繞規定了4個發音點:前左、前右,後左、後右,聽眾則被包圍在這中間。同時還可增加一個低音音箱,以加強對低頻信號的回放處理(就是4.1聲道音箱系統)。就整體效果而言,四聲道系統可以為聽眾帶來來自多個不同方向的聲音環繞,可以獲得身臨各種不同環境的聽覺感受,給用戶以全新的體驗。如今四聲道技術已經廣泛融入於各類中高階音效卡的設計中,成為未來發展的主流趨勢。

  5.1聲道:一些比較知名的聲音錄製壓縮格式,譬如杜比AC-3(Dolby Digital)、DTS等都是以5.1聲音系統為技術藍本的。其實5.1聲音系統來源於4.1環繞,不同之處在於它增加了一個中置單元。這個中置單元負責傳送低於80Hz的聲音信號,在欣賞影片時有利於加強人聲,把對話集中在整個聲場的中部,以增加整體效果。

  杜比定邏輯技術:杜比定邏輯(Dolby Pro-Logic)是美國杜比實驗室研製的,它用來把聲音還原,它有一個很大的特點,就是將四個聲道(前後左右)的原始聲音進行編碼,把它形成雙聲道的信號,放聲的時候先通過解碼器再送給放大器,借助中間環節環繞聲音箱,這樣就有臨場的環繞立體聲效果,使以前的平面聲場得到改變.

  DDP電路:DDP(Double Detect and Protect:二重探測與保護),它可以使Space對輸入的信號不再重複處理,同時對聲音的頻率和方向進行探測,而且自動調整,得到最佳的效果.

  DSP (Digtal Signal Processor:數字信號處理器):它是一種專用的數字信號處理器,在當時高階的16位音效卡上曾「一展風采」。為高階的音效卡實現環繞立體聲立下了不可默滅的功勳。但是,隨著新技術的不斷發展DSP的矛盾越來越突出,音效卡商為了自身的利益不得不「忍痛割愛」來降低成本。

  HZ 赫茲:用於描述聲音振動頻率的服務機構,也稱為CPS(Cycles Per Second)每秒一個振動週期稱為1HZ,人耳可聽到的音瀕約為20HZ到20KHZ。

  編碼和解碼:在數字音瀕技術中,用數字大小來替代聲音強弱高低的模擬電壓,並對音瀕資料進行壓縮的程序叫做編碼;在重放音樂時,再將壓縮的資料還原,稱為解碼。

  信噪比 (SNR:Signal to Noise Ratio):它是判斷音效卡噪聲能力的一個重要指標。用信號和噪聲信號的功率的比值即SNR,服務機構分貝。SNR值越大音效卡的濾波效果越好,一般是大於80分貝。

  頻率回應 (FR:Frequency Response):它是對音效卡的ADC和AC轉換器頻率回應能力的一個評價標準。人耳對聲音的接收範圍是20HZ-20KHZ,因此音效卡在這個範圍內音瀕信號始終要保持成一條直線式的回應效果。如果突起(在音效卡資料中是用功率增益來表示)或下滑(用功率衰減)都是失真的表現.

  總諧波失真(THD+N:Total Harmonic Distortion+Noise):THS+N是對音效卡是否保真度的評價指標。它對音效卡輸入的信號和輸出信號的波形的吻合程度進行比較。數值越低失真度就越小。在這個式子中的「+N」表示了在考慮保真度的同時也對噪聲進行了考慮。

  Direct Sound 3D:源自於Microsoft DirectX的老牌音瀕API。它的作用在於說明 開發者定義聲音在3D空間中的定位和聲響,然後把它交給DS3D相容的音效卡,讓它們用各種算法去實現。定位聲音的效果實際上取決於音效卡所採用的算法。對不能支持DS3D的音效卡,它的作用是一個需要佔用CPU的三維音效HRTF算法,使這些早期產品擁有處理三維音效的能力。但是從實際效果和執行效率看都不能令人滿意。所以,此後推出的音效卡都擁有了一個所謂的「硬體支持DS3D」能力。DS3D在這類音效卡上就成為了API接頭,其實際聽覺效果則要看音效卡自身採用的HRTF算法能力的強弱。

  EAX:環境音效擴展,Environmental Audio Extensions,EAX 是由創新和微軟聯合提供,作為DirectSound3D 擴展的一套開放性的API;它是創新通過獨家的EMU10K1 數字信號處理器嵌入到SB-LIVE中,來體現出來的;由於EAX目前必須依賴於DirectSound3D,所以基本上是用於遊戲之中。在正常情況下,遊戲程序師都是用DirectSound 3D來使硬體與軟體相互溝通,EAX將提供新的指令給設計人員,允許實時產生一些不同環境回聲之類的特殊效果(如三面有牆房間的回聲不同於完全封閉房間的回聲),換言之,EAX是一種擴展集合,加強了DirectSound 3D的功能。

  A3D:是Aureal Semiconductor開發的一種突破性的新的互動3D定位音效技術,使用這一技術的應用程式(通常是遊戲)可以根據用戶的輸入而決定音效的變化,產生圍繞聽者的3維空間中精確的定位音效,帶來真實的聽覺體驗,而且可以只用兩隻普通的音箱或一對耳機在實現,而通過四聲道,就能很好的去體現出它的定位效果。

  H3D:其實和A3D有著差不多的功效,但是由於A3D的技術是給Aureal Semiconductor註冊的,所以廠家就只能用H3D來命名,Zoltrix速捷時的AP 6400夜鶯,用的是C-Media CMI8738/C3DX的晶片,不要小看這個晶片,因為它本身可以支持上面所說的H3D技術、可支持四聲道、它本身還帶有MODEM的功能。

  SensauraQ3D:CRL和QSound是主要出售和開發HRTF算法的公司,自己並不推出指令集。CRL開發的HRTF算法叫做Sensaura,支持包括A3D 1.0和EAX、DS3D在內的大部分主流3D音瀕API。並且此技術已經廣泛運用於ESS、YAMAHA和CMI的音效卡晶片上,從而成為了影響比較大的一種技術,從實際試聽效果來看也的確不錯。而QSound開發的Q3D可以提供一個與EAX相仿的環境模擬功能,但效果還比較單一,與Sensaura大而全的性能指標相比稍遜一籌。QSound還提供三種其它的音效技術,分別是QXpander、QMSS和2D-to-3D remap。其中QXpander是一種立體聲擴展技術;QMSS是用於4喇叭模式的多音箱環繞技術,可以把立體聲擴展到4通道輸出,但並不加入混響效果。2D-to-3D remap則是為DirectSound3D的遊戲而設,可以把立體聲的資料映射到一個可變寬度的3D空間中去,這個技術支持使用Q3D技術的音效卡。

  IAS(Interactive Around-Sound):從上面談到的各種API和技術看各有特點,它們有的相互相容、有的卻水火不容。對於遊戲開發者來說,為了讓所有的用戶都滿意,很多時候必須針對不同的系統和API編寫多套程式碼,這是一件十分麻煩的事情。如果又有新的音瀕技術出現,開發者就又要再來一次。IAS就是針對這個麻煩而來的。IAS是Extreme Audio Re-ality,Inc(EAR)公司在開發者和硬體廠商的協助下開發出來的專利音瀕技術,這個技術能測試系統硬體,管理所有的音效平台需求,從而允許開發者只寫一次,即能隨處執行。IAS為音效設計者管理所有的音效資源,提供了DS3D支持和其它環繞聲的執行。這樣,開發者就可以騰出更多的精力去創作真實的3D音效,而無須為相容性之類的問題擔心。

  HRTF:是一種音效定位算法,它的實際作用在於欺騙我們的耳朵。簡單說這就是個頭部反應傳送函數(Head-Response Transfer Function)。要具體點呢,可以分成幾個主要的步驟來描述其功用。 第一步:製作一個頭部模型並安裝一支麥克風到耳膜的位置; 第二步:從固定的位置發出一些聲音; 第三步:分析從麥克風中得到聲音並得出被模型所改變的具體資料; 第四步:設計一個音瀕過濾器來模仿那個效果; 第五步:當你需要模仿某個位置所發出的聲音的時候就使用上述過濾器來模仿即可。 過濾器的回應就被認為是一個HRTF,你需要為每個可能存在聲源的地方來設置一個HRTF。其實我們並不需要無限多個HRTF。這裡的原因也很簡單,我們的大腦並不能如此精確。對於從我們的頭部為原點的半球形表面上大約分佈1000個這樣的函數就足夠了,而另一半應該是對稱的。至於距離感應該由迴響、響度等資料變化來實現。

  音效卡外置接頭:
-Joystick/MIDI:標準15針D型接頭,支持遊戲桿和MIDI設備

-Line Out 1: 前置揚聲器或立體聲耳機(32歐姆),除兩個簡化版(類型和數碼版)外,SB Live!系列均為鍍金模擬輸出接頭。

-Line Out 2:後置揚聲器,不支持耳機

-Microphone In:外置模擬式麥克風,沒有電磁干擾聲

-Line In:模擬式線輸入 內裝接頭

-TAD:TAD(Telephone Answering Device,電話回應設備),如果你有一個進行自動回應的Modem,可連接它來作為更完整的多媒體系統。

-CD Audio:CD音瀕接頭,可以通過連在音效卡上的揚聲器播放CD音樂

-AUX:連接其它內裝設備的接頭,如:TV/FM調諧卡,MPEG解碼卡,MIDI專用卡

-I2S:縮放視瀕數字輸入,用於創新的PC-DVD數字混音/環繞系統

-S/PDIF:S/PDIF(Sony/Philips Digital InterFace):索尼和飛利浦數字接頭英文縮寫,是由SONY公司與 PHILIPS公司聯合制定的)(民用)、 AES/EBU(專業)接頭格式。一般的數字音源都會有DIGITAL OUTPUT(數字輸出)的端子,便於使用者外接品質較好的DAC(數模轉換器)來提升音質或者和其它音響設備接駁。它可以避免模擬連接所帶來的額外信號,減少噪音,並且可以減少模數數模轉換和電壓不穩引起的信號損失。由於它能以20bit采樣音瀕,所以能在一個高精度的數字模數下,維持和處理音瀕信號。S/PDIF使得整個系統保持較高的品質,所以採用了S/PDIF的SB LIVE在保真度、連通性和創新性方面超越了許多家庭立體聲系統。而根據資料流的傳輸形式S/PDIF又可細分為以下兩種形式: 一、光纖線TOSLINK;二、同軸線 Coaxial。

-Microphone:連接內部麥克風,可輸入其它擴展卡輸出的聲音

-Modem:連接內裝式Modem,你可以使用現有的麥克風/揚聲器設置來控制Modem的DSVD或揚聲器。

-Digital I/O Header:AUD_EXT40針接頭,用帶狀電纜連接數字輸入/輸出子卡,支持更多的附加設備 數字I/O卡接頭

-Digital DIN:連接Cambridge Soundworks 7.1八揚聲器桌面劇院系統

-SPDIF IN:外置RCA數字輸入

-SPDIF OUT:外置RCA數字輸出

-Mini-DIN MIDI IN:附加的MIDI輸入

-Mini-DIN MIDI OUT:附加的MIDI輸出

TOP

發新話題